You are here: Home Teaching Ultrafast Spectroscopy

Ultrafast Spectroscopy

(Ultrafast Spectroscopy)


I. Introduction to time-resolved spectroscopy
   1.   Time vs frequency resolution
   2.   Time scales in nature
   3.   Relaxation methods (T-jump, p-jump)
   4.   Spectroscopy in shock waves
   5.   Flash photolysis
   6.   Differential optical properties
   7.   Examples
   8.   Electronic time-resolution limit
   9.   Pump-probe spectroscopy

II. Properties and measurement of ultrashort light pulses
   1.   Gaussian pulses
   2.   Instantaneous frequency and chirp
   3.   Fourier limit
   4.   Dispersion of light
   5.   Linear transmission and propagation
   6.   Group velocity dispersion and pulse broadening
   7.   Michelson interferometer
   8.   Autocorrelation functions
   9.   Dichroism and birefringence
   10. Frequency doubling
   11. Phase matching
   12. Temporal vs spectral phase
   13. Frequency-resolved optical gating

III. Generation, amplification and frequency conversion
   1.   Historical
   2.   Lasing principle
   3.   Inversion in 3-level and 4-level systems
   4.   Examples: HeNe-Laser, Nd:Yag-Laser
   5.   Optical resonators
   6.   Properties of laser light
   7.   Modelocking
   8.   Acousto-optic modelocking
   9.   Synchronous pumping
   10. Cavity dumping
   11. Saturable absorption
   12. Dispersion management
   13. Passive modelocking
   14. Kerr-lens modelocking
   15. Ti:sapphire laser
   16. Frequency doubling
   17. Sum-frequency generation
   18. Optical parametric conversion
   19. OPG, OPO, OPA
   20. Optical amplification

IV. Time-resolved fluorescence spectroscopy
   1.   Electronically excited states
   2.   Radiative vs nonradiative decay
   3.   Fluorescence spectrometer
   4.   Time-correlated single photon counting
   5.   Finite time-resolution and instrument response function
   6.   Convolution and deconvolution
   7.   Photodetectors
   8.   Isomerization reactions of stilbenes
   9.   Thermal unimolecular decay
   10. Unimolecular "fall-off", low and high pressure limit
   11. Energy-specific rate constants
   12. Diffusion control, Smoluchowski limit
   13. Streak camera
   14. Fluorescence upconversion
   15. Stationary vs dynamic emission spectrum
   16. Time-dependent fluorescence Stokes shift
   17. Dynamic solvation
   18. Solvation correlation function
   19. Fluorescence depolarization and rotational diffusion
   20. Parallel vs perpendicular vs magic angle detection
   21. Anisotropy decay in the gas phase

V. Quantum dynamics
   1.   Time scales of atomic motions
   2.   Why femtosecond spectroscopy?
   3.   Time-independent vs time-dependent Schrödinger equation
   3.   Eigenfunctions and stationary states
   4.   Non-stationary states (wavepackets)
   5.   Numerical propagation of wavepackets
   6.   Symmetrically-split operator
   7.   Some analytically solvable examples
   8.   Matter-field interactions and multiple states
   9.   Effective excited-state Hamiltonians
   10. Bound-to-free and bound-to-bound transtions
   11. Time-dependence picture of linear spectroscopy
   12. Linear Absorption and time-dependent Franck-Condon factor
   13. Linear emission and Raman-wavefunction
   14. Photodissociation of water
   15. Linear absorption spectrum of water in the ultraviolet
   16. Symmetric and asymmetric stretching coordinates
   17. Molecular motion along unstable orbits
   18. Partial absorption cross sections
   19. Local modes vs normal modes
   20. Bond-selective chemistry with lasers
   21. Nonlinear spectroscopy and spectroscopy of wavepackets
   22. Dynamic absorption and dynamic emission
   23. Bound-to-bound-to-bound sequence
   24. Bound-to-bound-to-free sequence

VI. Femtochemistry of photodissociation reactions
    1.  Full collisions vs half collisions
    2.  Heteronuclear and homonuclear triatomics
    3.  Potential energy surfaces
    3.  Bimolecular co-linear encounter
    4.  Mass-weighted Jacobi coordinates
    5.  Quantum dynamics simulations for the photodissociation of a triatomic
    6.  2-body vs 3-body fragmentation
    7.  Exit channel dynamics
    8.  Energy partitioning
    9.  Photodissociations in condensed phases
   10. Predissociation, trapping, caging, geminate and non-geminate recombination
   11. The femtosecond spectrometer
   12. Photodissociation of triiodide in liquid solution
   13. Early-time dynamics and nuclear coherences
   14. Spectroscopy of the transition state for the bimolecular encounter
   15. Vibrational wavepackets of the diatomic fragment
   16. "Classical movies"
   17. Fragment recoil and chirped wavepackets
   18. Spectroscopy with trains of optical pulses
   19. Vibrational excitation and relaxation of the diatomic fragment
   20. Vectorial properties of photodissociation reactions of triatomics
   21. Initial anisotropy and transition state geometry
   22. Inertial anisotropy decay and rotational excitation of the diatomic fragment
   23. Diffusive anisotropy decay and rotational diffusion of the diatomic fragment

VII. Laser and coherent control of chemical dynamics
   1.   Control of reactivity at the macroscopic level
   2.   Control of reactivity at the molecular level'
   3.   Bond-selective chemistry with lasers
   4.   Vibrationally mediated photodissociation
   5.   Vibrational excitation schemes
   6.   Photodissociation of water from vibrational overtones
   7.   Partial absorption cross sections of vibrational overtones
   8.   Coherent control of the water dissociation with nanosecond lasers
   9.   Local modes vs normal modes
   9.   Intramolecular vibrational energy redistribution
   10. Properties of ultrashort laser pulses revisited
   11. The zero-dispersion compressor
   12. Pulse shaping
   13. Tannor-Kosloff-Rice scheme
   14. Optimal control theory
   15. "Teaching lasers to control experiments"
   16. Evolutionary algorithms
   17. An application - Adaptive pulse compression
   18. Examples for coherent control experiments from the lieterature
   19. Is coherent control economically attractive?
   20. What can we learn from coherent control experiments?

Document Actions